Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 51

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of excavation damaged zones (EDZs) in Horonobe Underground Research Laboratory (URL)

Hata, Koji*; Niunoya, Sumio*; Aoyagi, Kazuhei; Miyara, Nobukatsu*

Journal of Rock Mechanics and Geotechnical Engineering, 16(2), p.365 - 378, 2024/02

Excavation of underground caverns, such as mountain tunnels and energy-storage caverns, may cause the damages to the surrounding rock as a result of the stress redistribution. In this influenced zone, new cracks and discontinuities are created or propagate in the rock mass. Therefore, it is effective to measure and evaluate the acoustic emission (AE) events generated by the rocks, which is a small elastic vibration, and permeability change. The authors have developed a long-term measurement device that incorporates an optical AE (O-AE) sensor, an optical pore pressure sensor, and an optical temperature sensor in a single multi-optical measurement probe (MOP). Japan Atomic Energy Agency has been conducting R&D activities to enhance the reliability of high-level radioactive waste (HLW) deep geological disposal technology. In a high-level radioactive disposal project, one of the challenges is the development of methods for long-term monitoring of rock mass behavior. Therefore, in January 2014, the long-term measurements of the hydro-mechanical behavior of the rock mass were launched using the developed MOP in the vicinity of 350 m below the surface at the Horonobe Underground Research Center. The measurement results show that AEs occur frequently up to 1.5 m from the wall during excavation. In addition, hydraulic conductivity increased by 2 to 4 orders of magnitude. Elastoplastic analysis revealed that the hydraulic behavior of the rock mass affected the pore pressure fluctuations and caused micro-fractures. Based on this, a conceptual model is developed to represent the excavation damaged zone (EDZ), which contributes to the safe geological disposal of radioactive waste.

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2023-020, 90 Pages, 2023/12

JAEA-Review-2023-020.pdf:6.59MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted from FY2020 to FY2022. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system with high neutron detection efficiency (a few count/nv) under high gamma ray background (1kGy/h). Developed components are neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies.

JAEA Reports

Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-071, 123 Pages, 2023/03

JAEA-Review-2022-071.pdf:6.07MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2021. The present study aims to develop an evaluation method necessary to obtain a perspective on the long-term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2021, the first year of the three-year plan, the following research items were undertaken by clarifying specific research methods, setting research directions, making necessary preparations, and conducting some tests and other activities.

JAEA Reports

Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Nagoya University*

JAEA-Review 2022-033, 80 Pages, 2022/12

JAEA-Review-2022-033.pdf:4.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Measurement methods for the radioactive source distribution inside reactor buildings using a one-dimensional optical fiber radiation sensor" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop an optical fiber type radiation sensor that can measure the radiation distribution one-dimensionally along the fiber under a high radiation field for the decommissioning of 1F. Based on the conventional time-of-flight method, we found several promising sensor candidates for the radiation distribution measurement under high dose rate and many scattered gamma-rays.

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2022-031, 89 Pages, 2022/12

JAEA-Review-2022-031.pdf:8.45MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2021. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under 1 kGy/h and compact-light-weight to fit constraints of the penetration size and the payload. The project aims to design and evaluate neutron detection devices based on diamond sensors and a high radiation resistive signal-processing data-transfer system based on radiation resistive integrated circuit technologies …

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2022-011, 80 Pages, 2022/07

JAEA-Review-2022-011.pdf:5.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to research and develop semi-autonomous mobile robot systems (multi-sensor fusion system, semantic simultaneous localization and mapping (SLAM), system for traversable-route learning and safe traversable-route presentation, etc.) that simply, safely, and rapidly make semantic survey maps …

JAEA Reports

Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; High Energy Accelerator Research Organization*

JAEA-Review 2021-038, 65 Pages, 2022/01

JAEA-Review-2021-038.pdf:4.42MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Technology development of diamond-base neutron sensors and radiation-resistive integrated-circuits for shielding-free criticality approach monitoring system" conducted in FY2020. The present study aims to develop key components of neutron detection system without a radiation shield for a criticality approach monitoring system. It is required high neutron detection efficiency for a few cps/nv under high gamma ray radiation environment (i.e. 1 kGy/h maximum) and compact-light-weight to fit constraints of the penetration size and the payload.

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2020-062, 47 Pages, 2021/01

JAEA-Review-2020-062.pdf:3.43MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Semantic Survey Map Building System using Semi-autonomous Mobile Robots for Surveying of Disaster Area and Gathering of Information in Nuclear Power Station" conducted in FY2019.

JAEA Reports

Long term monitoring and evaluation of the excavation damaged zone induced around the wall of the shaft applying optical fiber sensor (Cooperative research)

Hata, Koji*; Niunoya, Sumio*; Uyama, Masao*; Nakaoka, Kenichi*; Fukaya, Masaaki*; Aoyagi, Kazuhei; Sakurai, Akitaka; Tanai, Kenji

JAEA-Research 2020-010, 142 Pages, 2020/11

JAEA-Research-2020-010.pdf:13.74MB
JAEA-Research-2020-010-appendix(DVD-ROM).zip:149.9MB

In the geological disposal study of high-level radioactive waste, it is suggested that the excavation damaged zone (EDZ) which is created around a tunnel by the excavation will be possible to be one of the critical path of radionuclides. Especially, the progress of cracks in and around the EDZ with time affects the safety assessment of geological disposal and it is important to understand the hydraulic change due to the progress of cracks in and around EDZ. In this collaborative research, monitoring tools made by Obayashi Corporation were installed at a total of 9 locations in the three boreholes near the depth of 370 m of East Shaft at the Horonobe Underground Research Laboratory constructed in the Neogene sedimentary rock. The monitoring tool consists of one set of "optical AE sensor" for measuring of the mechanical rock mass behavior and "optical pore water pressure sensor and optical temperature sensor" for measuring of groundwater behavior. This tool was made for the purpose of selecting and analyzing of AE signal waveforms due to rock fracture during and after excavation of the target deep shaft. As a result of analyzing various measurement data including AE signal waveforms, it is able to understand the information on short-term or long-term progress of cracks in and around EDZ during and after excavation in the deep shaft. In the future, it will be possible to carry out a study that contributes to the long-term stability evaluation of EDZ in sedimentary rocks in the deep part of the Horonobe Underground Research Laboratory by evaluation based on these analytical data.

JAEA Reports

Long-term monitoring of the stability of the gallery in Horonobe Underground Research Laboratory

Aoyagi, Kazuhei; Sakurai, Akitaka; Miyara, Nobukatsu; Sugita, Yutaka

JAEA-Research 2020-004, 68 Pages, 2020/06

JAEA-Research-2020-004.pdf:6.4MB
JAEA-Research-2020-004-appendix1(DVD-ROM).zip:636.84MB
JAEA-Research-2020-004-appendix2(DVD-ROM).zip:457.72MB
JAEA-Research-2020-004-appendix3(DVD-ROM).zip:595.19MB

In construction and operational phase of a high-level radioactive waste disposal project, it is necessary to monitor on mechanical stability of underground facility for long term. In this research, we measured the displacement of the rock around the gallery and the stress acting on support materials. Furthermore, we investigated the durability of measurement sensor installed in the rock mass and the support material such as concreate lining and steel support. As a result, optical fiber sensor is appropriate for measurement of the displacement of rock mass around the gallery, while it is enough to apply the conventional electric sensor for the measurement of stress acting on the support material in the geological environment (soft rock and low inflow). The result of the measurement in the fault zone in 350 m gallery, show that the stresses acting on both shotcrete and steel arch lib exceeded the value which will cause the instability of the gallery. However, as, we found no crack on the surface of the shotcrete. By observation on the surface of shotcrete, thus, it was concluded that careful observation of shotcrete around that section in addition to the monitoring the measured stress was necessary to continue. In other measurement sections, there was no risk for the instability of the gallery as a result of the investigation of the measurement result.

JAEA Reports

Poro-elastic parameter acquisition test using siliceous mudstone (Wakkanai formation)

Aoki, Tomoyuki*; Tani, Takuya*; Sakai, Kazuo*; Koga, Yoshihisa*; Aoyagi, Kazuhei; Ishii, Eiichi

JAEA-Research 2020-002, 83 Pages, 2020/06

JAEA-Research-2020-002.pdf:8.25MB
JAEA-Research-2020-002-appendix(CD-ROM).zip:6.63MB

The Japan Atomic Energy Agency (JAEA) has conducted with the Horonobe Underground Research Project in Horonobe, Teshio-gun, Hokkaido for the purpose of research and development related to geological disposal technology for high-level radioactive wastes in sedimentary soft rocks. The geology around the Horonobe Underground Research Laboratory (HURL) is composed of the Koetoi diatomaceous mudstone layer and the Wakkanai siliceous layer, both of which contain a large amount of diatom fossils. Since these rocks exhibit relatively high porosity but low permeability, it is important to investigate the poro-elastic characteristics of the rock mass. For this objective, it is necessary to measure parameters based on the poro-elastic theory. However, there are few measurement results of the poro-elastic parameters for the geology around HURL, and the characteristics such as dependence on confining pressure are not clearly understood. One of the reasons is that the rocks show low permeability and the pressure control during testing is difficult. Therefore, a poro-elastic parameter measurement test was conducted on the siliceous mudstone of the Wakkanai formation to accumulate measurement results on the poro-elastic parameters and to examine the dependence of the parameters on confining pressure. As a result, some dependency of the poro-elastic parameters on confining pressure was observed. Among the measured or calculated poro-elastic parameters, the drained bulk modulus increased, while the Skempton's pressure coefficient, and the Biot-Wills coefficient in the elastic region decreased with the increase in confining pressure. The measurement results also inferred that the foliation observed in the rock specimens might impact a degree of dependency of those parameters on confining pressure.

JAEA Reports

Development of semantic survey map building system using semi-autonomous mobile robots for surveying of disaster area and gathering of information in nuclear power station (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Polytechnic University*

JAEA-Review 2019-022, 35 Pages, 2020/01

JAEA-Review-2019-022.pdf:2.71MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the Development of Semantic Survey Map Building System Using Semi-autonomous Mobile Robots for Surveying of Disaster Area and Gathering of Information in Nuclear Power Station. The objective of the present study is to research and develop semi-autonomous mobile robot systems (multi-sensor fusion system, semantic simultaneous localization and mapping (SLAM), system for traversable-route learning and safe traversable-route presentation, etc.) that simply, safely, and rapidly make semantic survey maps including multiple information (air dose rate, temperature, obstacles, etc.). The system will be applied to the investigation of the situation inside the building of the nuclear power station where people cannot access at the time of disaster.

Journal Articles

Adefining the mechanism of the gas-bubble AE characteristics by two-phase flow test

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Tanai, Kenji

Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.92 - 97, 2020/01

Since underground water at the Horonobe Underground Research Laboratory site includes the dissolved gas, it is important to understand the quantitative behavior of AE signal waveform clearly and to develop the criteria of sorting technique. In this report, we tried to perform two types of laboratory tests (Small pipe test and Flat-plate test) in order to obtain detail data of AE signal wave form under two-phase flow. As the result, we could understand that there exists the relationship between the pressure breathing and AE generation, and that the diameter of pipe did not affect the AE behavior.

Journal Articles

Experimental study on local interfacial parameters in upward air-water bubbly flow in a vertical 6$$times$$6 rod bundle

Han, X.*; Shen, X.*; Yamamoto, Toshihiro*; Nakajima, Ken*; Sun, Haomin; Hibiki, Takashi*

International Journal of Heat and Mass Transfer, 144, p.118696_1 - 118696_19, 2019/12

 Times Cited Count:15 Percentile:64.13(Thermodynamics)

Journal Articles

Local gas-liquid two-phase flow characteristics in rod bundle geometry

Xiao, Y.*; Shen, X.*; Miwa, Shuichiro*; Sun, Haomin; Hibiki, Takashi*

Konsoryu Shimpojiumu 2018 Koen Rombunshu (Internet), 2 Pages, 2018/08

In order to develop constitutive equations of two-fluid model in rod bundle flow channels, experiments of adiabatic air-water upward two-phase flow in 6$$times$$6 rod bundle flow channel were performed. Local flow parameters such as void fraction, interfacial area concentration (IAC) and so on were measured by a double-sensor optical probe. The area-averaged void fraction and IAC data were compared with the predictions from a drift-flux model and an IAC correlation.

Journal Articles

Some characteristics of gas-liquid two-phase flow in vertical large-diameter channels

Shen, X.*; Schlegel, J. P.*; Hibiki, Takashi*; Nakamura, Hideo

Nuclear Engineering and Design, 333, p.87 - 98, 2018/07

 Times Cited Count:11 Percentile:34.62(Nuclear Science & Technology)

Journal Articles

Study on analysis methodology of AE signal wave at great depth excavation

Niunoya, Sumio*; Hata, Koji*; Uyama, Masao*; Aoyagi, Kazuhei; Wakasugi, Keiichiro

Dai-45-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.226 - 231, 2018/01

The objective of this research is to investigate the long-term hydro-mechanical behavior of rock mass around the shaft in the Horonobe Underground Research Laboratory (URL). The long-term monitoring has been carried out by optical AE sensors, optical water pressure sensors, and optical temperature sensors below 350m depth of the shaft in the Horonobe URL. From the first analytical results, it was too hard to discriminate the uncleared AE wave by using the resonant characteristic. Thus, at this time, we tried to reanalysis by using the half width of spectrum, we could discriminate it correctly as AE from the breaking of rock.

Journal Articles

Electrochemical impedance analysis on solid electrolyte oxygen sensor with gas and liquid reference electrodes for liquid LBE

Adhi, P. M.*; Okubo, Nariaki; Komatsu, Atsushi; Kondo, Masatoshi*; Takahashi, Minoru*

Energy Procedia, 131, p.420 - 427, 2017/12

 Times Cited Count:0 Percentile:0.03(Energy & Fuels)

The ionic conductivity of solid electrolyte may insufficient, and the sensor output signal will deviate from the theoretical one in low temperature. The performance of oxygen sensor with Ag/air reference electrode (RE) and liquid Bi/Bi$$_{2}$$O$$_{3}$$ RE was tested in low-temperature LBE at 300$$sim$$450$$^{circ}$$C and the charge transfer reactions impedance at the electrode-electrolyte interface was analyzed by electrochemical impedance analysis (EIS). After steady state condition, both of the sensors performed well and can be used at 300$$sim$$450$$^{circ}$$C. Bi/Bi/Bi$$_{2}$$O$$_{3}$$ RE has lower impedance than Ag/air RE. Therefore, the response time of the oxygen sensor with Bi/Bi/Bi$$_{2}$$O$$_{3}$$ RE is faster than the oxygen sensor with Ag/air RE in the low-temperature region.

Journal Articles

Experimental study on interfacial area transport of two-phase bubbly flow in a vertical large-diameter square duct

Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo

International Journal of Heat and Fluid Flow, 67(Part A), p.168 - 184, 2017/10

 Times Cited Count:17 Percentile:62.14(Thermodynamics)

An experimental study on upward bubbly air-water flows in a vertical large-diameter square duct have been performed by mainly using four-sensor probes. Local measurements of interfacial area concentration (IAC), void fraction, 3D bubble velocity vector and bubble diameter at 3 axial positions were conducted. Although the interfacial area transport equation (IATE) and its bubble coalescence and breakup models have already played an important role in predicting the IAC in general two-phase flow fields, they are mainly developed based on the two-phase flow experimental data taken in round pipes or small diameter channels. To confirm their usability in large-diameter square duct, this study has evaluated the 1D one-group IATE with its 6 sets of bubble coalescence and breakup models with the presently-obtained database. It was found the relative error between the best prediction and the database was 25%.

Journal Articles

Axial flow characteristics of bubbly flow in a vertical large-diameter square duct

Shen, X.*; Sun, Haomin; Deng, B.*; Hibiki, Takashi*; Nakamura, Hideo

Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17) (USB Flash Drive), 14 Pages, 2017/09

An experimental study on the upward bubbly air-water flows in a vertical large-diameter square duct have been performed by using four-sensor probes. The four-sensor probe were applied in the local measurements at 3 axial positions along the flow direction to obtain interfacial area concentration, 3-D bubble velocity vector and bubble diameter. The obtained void fraction, interfacial area concentration, 3-D bubble velocity vector and bubble diameter provided valuable insight into the flow structure and will serve as a valuable database to develop the mechanistic models for interfacial area transport equation sources and sinks.

51 (Records 1-20 displayed on this page)